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1. Introduction

The appearance of integrable systems in the context of the Seiberg-Witten theory is now

clearly related to the gauge/string duality. The quasiclassical tau-functions or the infrared

prepotentials, which give the exact low-energy effective actions on the gauge side, become

identified in this framework with generating functions of the particular topological string

models on the string side of duality. For example, the simplest possible quasiclassical

tau-function of extended Seiberg-Witten theory explicitly coincides [1, 2] with the “half-

truncated” generating function for the Gromov-Witten classes on P
1 or the correlation

functions of the topological P
1 string model.

The gauge/string vocabulary looks here as follows: we compare the oversimplified but

perturbed in the ultraviolet, simplest possible “U(1)” Seiberg-Witten theory (to be seen,

for example, as naive Nc = 1 particular case of the U(Nc)-family) with the topological

string model, describing quantum cohomologies of P
1, to be generally identified with the

base curve of the asymptotically free Seiberg-Witten theory. The variable a, coupled to

the unity operator 1 of string theory, is identified with the only condensate 〈φ〉 = a on the

gauge theory side, while the variable t1 = τ0 = ϑ0

2π + 4πi
g2
0

, coupled to the Kähler class ̟ of

P
1 target space, is identified with the (complexified) coupling constant. Moreover, it turns

out, that all perturbations of the gauge theory, encoded in the ultraviolet prepotential

FUV (x; t) = t(x) =
∑

k>0

tk
xk+1

k + 1
(1.1)
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correspond to switching on all gravitational descendants ⊕k>0tk+1σk(̟) of the Kähler class

̟ of the P
1 model, while the gravitational descendants of the unity operator remain to

be turned off, except for the σ1(1), which forms the condensate with 〈σ1(1)〉 6= 0. An

essential point is that string coupling ~ in the P
1 model arises as certain “equivariant

parameter” of the background, providing the infrared regularization of the theory on the

gauge theory side [3], in order to collect contributions from the gauge theory instantons,

while the instantonic expansion in gauge theory is going in powers of the scale Λ2 = et′′(a).

The exact quasiclassical solution of this theory was explicitly constructed in [2] as

a solution to dispersionless Toda hierarchy. More generally it was also proposed for the

nonabelian extended Seiberg-Witten theory in terms of quasiclassical tau-function [4] on

the deformed by ultraviolet perturbations Seiberg-Witten curve.

However, from the string side of duality this gives rise only to the truncated version

of the P
1 model, and a natural step would be including the whole set of descendants

⊕k>0Tkσk(1) of another primary - the unity operator. This has been done already in the

P
1 model itself, see [5 – 9], where the matrix integral descriptions was first conjectured, the

Virasoro constraints for the corresponding Gromov-Witten theory were formulated, and

the generating functions were constructed in terms of specific correlators in the theory of

free fermions.

Below we are going to write explicitly the quasiclassical solution to this theory, directly

generalizing that of [2] (see also [12]). It terms of integrable hierarchies, it will raise the

dispersionless Toda chain to the so called, following [10, 11], extended Toda hierarchy,

where the gravitational descendants ⊕k>0Tkσk(1) of unity, and corresponding “logarithmic

flows” [5] extend the set of mutually commuting flows of the Toda chain. It turns out, that

introducing descendants of unity into the gauge theory is a very nontrivial step, presumably

related to their role of “deformation” of the moduli space of background condensates in

field theory, and we will find some hints of that reflected in the properties of the exact

quasiclassical solution.

The extended quasiclassical solution will be constructed in pure geometric terms, which

immediately suggest a natural nonabelian generalization - an extremely important thing

if one would seriously have in mind the application of this duality for the purposes of

gauge theory. The nonabelian generalization is also proposed below, but - quite typically

in the geometric approach - only for class of solutions, when certain finite number of

gravitational descendants of unity is turned on. We discuss also the relation of our solution

to the variational problem for a certain functional (in spirit of [2, 13]), in fact even with

two equivalent functional formulations, whose exact relation with the Nekrasov partition

function of summation over the gauge theory instantons [3] remains beyond the scope of

this paper.

The paper is organized as follows: in section 2 we remind the construction for the

quasiclassical solution to dispersionless Toda chain, corresponding to the half-truncated P
1

topological string model, with the descendants of unity switched off, except for a conden-

sate 〈σ1(1)〉 6= 0. In section 3 we generalize this solution for the switched on descendants

of unity, propose the formula for the first derivatives of the generating function w.r.t. new

variables, and present explicit computations for the simplest nontrivial cases of this ex-
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tension. Next, in section 4 we turn first time to the nonabelian theory, and construct the

solution corresponding to the perturbative limit, which produces all important ingredients

for the functional formulation of the problem: the kernel and generalized ultraviolet prepo-

tential (1.1) for switched on descendants of unity. In section 5 we discuss the quasiclassical

Virasoro constrains and functional formulations of the problem. Despite the form, sug-

gested by perturbative nonabelian theory, we propose its equivalent formulation, obtained

by an integral transformation and useful for studying the dependence of the functional

upon new times {Tn} of the extended hierarchy. Finally, in section 6 we propose the for-

mulation of the nonabelian U(Nc) theory in terms of abelian differentials on hyperelliptic

curve of genus g = Nc − 1, and discuss the results and their possible generalizations in

section 7.

2. Dispersionless Toda chain

Let us, first, remind the main formulas for the solution from [2] for the dispersionless Toda

chain. We will follow here more convenient normalization from [12].

In the case of the deformed in the ultraviolet U(1) supersymmetric gauge theory the

Nc = 1 Seiberg-Witten curve has a single cut, and the double cover of the z-plane y2 =

(z − x+)(z − x−) can be always presented in the form

z = v + Λ

(

w +
1

w

)

(2.1)

with x± = v ± 2Λ and

y2 = (z − v)2 − 4Λ2 (2.2)

The solution to dispersionless Toda chain is encoded into the function S, odd under the

involution w ↔ 1
w on the double cover (2.1), with the asymptotic

S(z) =
z→∞

−2z(log z − 1) + t′(z) + 2a log z −
∂F

∂a
− 2

∑

k>0

1

kzk

∂F

∂tk
(2.3)

The coefficients at singular terms are identified with the variables of the hierarchy, while the

regular part of expansion defines the first derivatives of the (logarithm of the) tau-function

F . In terms of the uniformizing variable w one can globally write

S = −2z log w − 2Λ(log Λ − 1)

(

w −
1

w

)

+
∑

k>0

tkΩk(w) + 2a log w (2.4)

where

Ωk(w) = zk
+ − zk

−, k > 0 (2.5)

are the Laurent polynomials, odd under w ↔ 1
w . The first term in (2.4) comes from the

Legendre transform of the Seiberg-Witten differential dΣ ∼ z dw
w .

The canonical Toda chain times are extracted from (2.3) by

t0 = resP+
dS = −resP−

dS = 2a (2.6)
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and

tk =
1

k
resP+

z−kdS = −
1

k
resP−

z−kdS, k > 0 (2.7)

From the expansion of S it also immediately follows, that

∂F

∂tk
=

1

2
resP+

zkdS = −
1

2
resP−

zkdS, k > 0 (2.8)

The consistency condition for (2.8) is ensured by the symmetricity of second derivatives

∂2F

∂tn∂tk
=

1

2
resP+

(zkdΩn) =
1

2
resP+

(zndΩk) (2.9)

where

Ω0 =
∂S

∂a
=

z→P±

±

(

2 log z −
∂2F

∂a2
− 2

∑

n>0

∂2F

∂a∂tn

1

nzn

)

(2.10)

Ωk =
∂S

∂tk
=

z→P±

±

(

zk −
∂2F

∂a∂tk
− 2

∑

n>0

∂2F

∂tk∂tn

1

nzn

)

, k > 0 (2.11)

form a basis of meromorphic functions with poles at the points P±, with z(P±) = ∞. All

time-derivatives here are taken at constant z.

Expansion (2.10), (2.11) of the Hamiltonian functions (2.5) expresses the second deriva-

tives of F in terms of the coefficients of the equation of the curve (2.1), e.g.

Ω0 =
z→∞

2 log z − 2 log Λ −
2v

z
−

2Λ2 + v2

z2
+ . . . (2.12)

Ω1 =
z→∞

z − v −
2Λ2

z
−

2vΛ2

z2
+ . . . (2.13)

Ω2 =
z→∞

z2 − (v2 + 2Λ2) −
4vΛ2

z
−

2Λ2(Λ2 + 2v2)

z2
+ . . . (2.14)

Comparison of the coefficients in (2.10)–(2.14) gives, in particular,

∂2F

∂a2
= log Λ2,

∂2F

∂a∂t1
= v

∂2F

∂t21
= Λ2 (2.15)

and, therefore
∂2F

∂t21
= exp

∂2F

∂a2
(2.16)

which becomes the long-wave limit of the Toda chain equations for the co-ordinate aD = ∂F
∂a

after an extra derivative with respect to a is taken

∂2aD

∂t21
=

∂

∂a
exp

∂aD

∂a
(2.17)

One can now find the dependence of the coefficients of the curve (2.1) on the deformation

parameters t of the microscopic theory by requiring dS = 0 at the ramification points
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z = x± = v ± 2Λ, where dz = 0. This condition avoids from arising of extra singularities

at the branch points in the variation of dS w.r.t. moduli of the curve. Equation

dz

d log w
= Λ

(

w −
1

w

)

= 0 (2.18)

fixes the branch points to be at w = ±1, where now

dS

d log w

∣
∣
∣
∣
w=±1

=
∑

k>0

tk
dΩk

d log w

∣
∣
∣
∣
w=±1

+ 2a − 2v ∓ 4Λ log Λ = 0 (2.19)

If tk = 0 for k > 1, solution to (2.19) immediately gives

v = a, Λ2 = et1 (2.20)

and the prepotential

F =
1

2
aaD +

1

2
resP+

(zdS) −
a2

2
=

1

2
a2t1 + et1 (2.21)

which is a well-known expression for the generating function of the P
1 model, restricted to

the “small phase space” of the primary operators.

Φ-function. In the context of dispersionless and generic quasiclassical hierarchies it is

useful to introduce

Φ =
dS

dz
=

z→∞
−2 log z + t′′(z) +

2a

z
+ 2

∑

k>0

1

zk+1

∂F

∂tk
(2.22)

odd under the involution w ↔ 1
w , or globally

Φ = −2 log w +
∑

k>1

ktkΩk−1 (2.23)

Consistency between (2.23) and (2.22) gives rise exactly to the equations (2.19), and can

be used as another way of their derivation. This function does not have singularities except

for the points P± with z(P±) = ∞. It has a natural integral representation

Φ(z) = t′′(z) −

∫

dxf ′′(x) log(z − x) (2.24)

with the integrable “density” f ′′(x)

1

2

∫

dxf ′′(x) = 1,
1

2

∫

dxxf ′′(x) = a (2.25)

related to the second derivative of the extremal shape function for random partitions [13].

One can easily see, that

2if ′′(z) = ∆Φ′(z) = Φ′(z + i0) − Φ′(z − i0) (2.26)

while for the function (2.24) itself one gets

∆Φ(z) = Φ(z + i0) − Φ(z − i0) = −2i

∫

dxf ′′(x) arg(z − x) = 2if ′(z) (2.27)

The function Φ, together with z (or generally one should better refer to their differentials

dΦ and dz [4]), is a basic ingredient for the quasiclassical hierarchy, and will be exploited

below, when discussing the Virasoro constrants.
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3. Extended quasiclassical Toda hierarchy

Formula (2.4) can be naturally generalized to the higher logarithmic flows

S =
∑

k>0

tkΩk(w) + 2a log w − 2
∑

n>0

TnHn(z,w) (3.1)

so that (2.4) is a particular case of (3.1), corresponding to Tn = δn,1. The extra Hamilto-

nians

Hk(z,w) = zk log w +
k∑

j=1

C
(k)
j Ωj(w) (3.2)

are odd under involution w ↔ 1
w and fixed by the asymptotic

Hk(z,w) =
z→∞

±H
(+)
k (z) + O(1) (3.3)

H
(+)
k (z) = zk(log z − ck) (3.4)

where the Harmonic numbers

ck =

k∑

i=1

1

i
, k > 0 (3.5)

(one can also set c0 = 0) ensure ”scaling property” of the singular parts

dH
(+)
k = kH

(+)
k−1dz (3.6)

From (3.3), (3.4) one immediately gets, that

C
(k)
k = log Λ − ck = H

(+)
k (Λ)Λ−k (3.7)

C
(k)
j = ωk−j, j = 1, . . . , k − 1 (3.8)

log w =
z→∞

log z − log Λ −
∑

k>0

ωk

zk
(3.9)

In particular, H0 = log w, and

H1(z,w) = z log w + Λ(log Λ − 1)

(

w −
1

w

)

(3.10)

is the Eguchi-Yang term (see [5]), remaining in the expansion (2.3) for Tn = δn,1, which

corresponds to nonvanishing condensate 〈σ1(1)〉 6= 0. One can also write for (3.1)

S = −2T (z) log w + 2a log w +
∑

k>0

t̂kΩk(w) (3.11)

with

T (z) =
∑

n>0

Tnzn (3.12)

t̂k = tk − 2Tk(log Λ − ck) − 2
∑

l>0

ωlTk+l, k > 0 (3.13)
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which can be interpreted as a reparameterization z → T (z) with certain compensating

transformation of the function (2.4). The function T (z), and therefore the times {Tn} can

be defined through the jumps of the function (3.1), (3.11)

T (z) =
i

4π
∆S (3.14)

or, in a different way, via the residues of derivatives

Tn = −
1

2n!
resP+

dS(n) =
1

2n!
resP−

dS(n), n ≥ 0 (3.15)

with S(n) = dnS
dzn .

Now let us propose the dual to (3.15) formula, which defines the corresponding deriva-

tives of the prepotential
∂F

∂Tn

∣
∣
∣
∣
t

= (−)nn! (Sn)0 (3.16)

where
dnSn

dzn
= S, n ≥ 0 (3.17)

or Sn is the n-th primitive of (3.1), odd under the involution w ↔ 1
w of (2.1). This is a new

ingredient in the formulation of quasiclassical hierarchy, going beyond the original setup

of [4]. This formula is directly related to the gravitational dressing of the primary operators

in the (here dual, with the superpotential z = v + Λ
(
w + 1

w

)
on the w-cylinder) Landau-

Ginzburg theory, suggested in [14]. We propose now, that (3.16), (3.17) is a strict definition

of dependence of the quasiclassical tau-function upon the times if extended hierarchy, which

is trusted by symmetricity of the corresponding second derivatives of (3.18) and (3.16),

following from the Riemann bilinear identities on the cut w-cylinder (2.1), see appendix.

The definitions of the prepotential, as a function of Toda chain times t remains intact, i.e.

∂F

∂tk

∣
∣
∣
∣
T

=
1

2
resP+

zkdS = −
1

2
resP−

zkdS, k > 0 (3.18)

where the derivatives are now taken at fixed T.

Instead of (2.3) one can now write for (3.1)

S(z) =
z→∞

−2
∑

n>0

Tnzn(log z − cn) + t′(z) + 2a log z −
∂F

∂a
− 2

∑

k>0

1

kzk

∂F

∂tk
(3.19)

It means, that in addition to (2.10), (2.11) one gets for the logarithmic Hamiltonians

Hn(z,w) = −
1

2

∂S(z)

∂Tn
=

z→∞
zn(log z − cn) +

1

2

∂2F

∂a∂Tn
+
∑

k>0

1

kzk

∂2F

∂Tn∂tk
(3.20)

Note also, that the constant term in the r.h.s. of (3.16) essentially depend on the negative

powers of expansions of Ωk, therefore ∂F
∂Tn

is expressed in terms of ∂2F
∂tk∂tn

, and this can be

– 7 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
5

rewritten as a sort of quasiclassical mixed Hirota-Virasoro type constraints. For example,

one gets in this way

dS1 = S(z)dz =
∑

k>0

tkz
kdz+2a log zdz−2

∑

n>o

TnH(+)
n (z)dz−

∂F

∂a
dz−2

∂F

∂t1

dz

z
+ . . . (3.21)

i.e.

S1 =
∑

k>0

tk

k + 1
Ωk+1(w) + 2aH1(z,w) − 2

∑

n>o

Tn

n + 1
Hn+1(z,w) −

∂F

∂a
Ω1(w) − 2

∂F

∂t1
log w

(3.22)

and therefore

(S1)0 = −
∑

k>0

tk

k + 1

∂2F

∂a∂tk+1
+a

∂2F

∂a∂T1
−
∑

n>o

Tn

n + 1

∂2F

∂a∂Tn+1
+

∂F

∂a

∂2F

∂a∂t1
+

∂F

∂t1

∂2F

∂a2
(3.23)

Upon (3.16) this can be rewritten as

∂

∂a

(

a
∂F

∂T1
+

∂F

∂a

∂F

∂t1
−
∑

k>0

1

k + 1

(

tk
∂F

∂tk+1
+ Tk

∂F

∂Tk+1

))

= 0 (3.24)

The quasiclassical Virasoro constraints in their canonical form will be discussed below in

section 5.

Small phase space. Let now only t1, a and T1 6= 1 be nonvanishing. Then

S = t1Ω1 + 2a log w − 2T1H1 (3.25)

=
z→∞

t1z − 2T1z(log z − 1) + 2a log z + (2T1v log Λ − t1v − 2a log Λ) −

−
(
2T1Λ

2 − T1v
2 − 4T1Λ

2 log Λ + 2T1Λ
2 + 2av

) 1

z
+ O

(
1

z2

)

which means that

S1 =
t1

2
Ω2(w) − T1H2(z,w) + 2aH1(z,w) + (2T1v log Λ − t1v − 2a log Λ) Ω1(w) −

−
(
2T1Λ

2 − T1v
2 − 4T1Λ

2 log Λ + 2T1Λ
2 + 2av

)
log w (3.26)

and therefore

(S1)0 =
1

2
t1v

2 − t1Λ
2 − 2T1Λ

2 − 2T1v
2 log Λ + 4T1Λ

2 log Λ + 2av log Λ −

−4T1Λ
2 (log Λ)2 + 2t1Λ

2 log Λ (3.27)

Equations dS
d log w

∣
∣
∣
w=±1

= 0 now give

v =
a

T1
, Λ2 = exp

t1

T1
(3.28)

which upon substitution into (3.27), and using (3.16) gives rise to

F(t1, a, T1) =
a2t1

2T1
+ T 2

1 exp
t1

T1
(3.29)

– 8 –
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found originally in [6]. One can conclude therefore, that switching on the first time T1

results in simultaneous rescaling of all the times t1 → t1
T1

, a → a
t1

etc, together with the

string coupling ~ → ~

T1
, since (3.29) can be rewritten as

1

T 2
1

F(t1, a, T1) =
1

2

(
a

T1

)2
t1

T1
+ exp

t1

T1
= F

(
t1

T1
,

a

T1
;T1 = 1

)

(3.30)

with the r.h.s. defined in (2.21).

It is interesting to point out that at T1 → ∞, (3.29) gives

F(t1, a, T1) ∼
T1→∞

(

T 2
1 + T1t1 +

t21
2

)

+
1

T1

(
a2t1

2
+

t31
6

)

+ . . . (3.31)

= . . . +
1

6T1

(
(t1 + a)3 + (t1 − a)3

)
+ . . .

= . . . F(t1 + a, T1) + F(t1 − a, T1) + . . . (3.32)

modulo quadratic terms and O
(
T−2

1

)
, where

F(x, T1) =
x3

6T1
(3.33)

is the prepotential of pure two-dimensional topological gravity.

T2 now switched on. Equations (2.19) for the switched on T2 (in addition to the small

phase space) give rise to

t1 = (2T1 + 4T2v) log Λ (3.34)

a = T1v + T2

(
v2 − 2Λ2 + 4Λ2 log Λ

)
(3.35)

which already cannot be solved analytically for v and Λ, though the solutions can be easily

found as series in T2, with the first few terms

v =
a

T1
−

T2

T 3
1

(

a2 + 2t1T1e
t1
T1 − 2T 2

1 e
t1
T1

)

+
2aT 2

2

T 5
1

(

a2 + 2t21e
t1
T1 + 2t1T1e

t1
T1 − 2T 2

1 e
t1
T1

)

+ . . . (3.36)

log Λ =
t1

2T1
−

at1T2

T 3
1

+
t1T

2
2

T 5
1

(

3a2 + 2t1T1e
t1
T1 − 2T 2

1 e
t1
T1

)

+ . . . (3.37)

and formulas (3.18), (3.16) lead to the following expression for the prepotential

F =
a2t1

2T1
+ T 2

1 e
t1
T1 + T2

(

−
a3t1

3T 3
1

+ 4ae
t1
T1 −

2at1

T1
e

t1
T1

)

+ (3.38)

+T 2
2

(
a4t1

2T 5
1

+
2a2t21
T 4

1

e
t1
T1 −

2a2t1

T 3
1

e
t1
T1 +

t21
T 2

1

e
2t1
T1 −

3t1
T1

e
2t1
T1 +

5

2
e

2t1
T1

)

+ . . .

which certainly satisfies, up to quadratic order in T2, the long-wave limit of the Toda chain

equation (2.16). One can also easily check, that formula (3.38) up to the shift T1 → 1−δT1
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from the condensate of 〈σ1(1)〉 and certain rescaling (say, T2 → −T2

2 ) coincides with the

expansion, obtained in the appendix of the second paper of [10]. When deriving (3.38) we

have used, in particular, n = 1, 2 cases of (3.16), expressing as in (3.27) the constant parts

of the first two primitives of S (together with the constant part of the S itself) in terms of

the coefficients of the curve (2.1)

(S)0 = 2T1v log Λ − 4T2Λ
2 + 2T2v

2 log Λ + 4T2Λ
2 log Λ − vt1 − 2a log Λ (3.39)

(S1)0 = 4T2vΛ2 log Λ − 4T1Λ
2(log Λ)2 + 4T1Λ

2 log Λ − 2T2v
3 log Λ − 2T1v

2 log Λ +

+
1

2
t1v

2 − 2Λ2T1 + 2av log Λ − 8vΛ2T2(log Λ)2 + 2t1Λ
2 log Λ − t1Λ

2

(S2)0 = T2v
4 log Λ − 2aΛ2 log Λ − av2 log Λ + 2aΛ2 + t1Λ

2v −
1

6
t1v

3 +

+T1v
3 log Λ +

5

2
T2Λ

4 − 2T1vΛ2 log Λ − 4T2v
2Λ2 log Λ − 6T2Λ

4 log Λ +

+4T2Λ
4(log Λ)2 + 8T2v

2Λ2(log Λ)2 + 4T1vΛ2(log Λ)2 − 2t1vΛ2 log Λ

It is also instructive to write explicitly in this case

Φ(t1, a, T1, T2) =
dS

dz
= −2T1 log w − 4T2H1(z,w) (3.40)

= −2T1 log w − 4T2

(

z log w + Λ(log Λ − 1)

(

w −
1

w

))

and

Φ′(t1, a, T1, T2) =
dΦ

dz
= −4T2 log w −

2

Λ

T1 + 2T2v + 2T2 log Λ(z − v)

w − 1
w

(3.41)

where the coefficients of the curve (2.1) Λ = Λ(t1, a, T1, T2) and v = v(t1, a, T1, T2) are

constrained by (3.34),(3.35). We see, in particular, that the Vershik-Kerov “arcsin law” [15],

corresponding to the first term in the r.h.s. of (3.40) is now not only perturbed by the

semicircle Wigner distribution, (like for the σ1(̟) or t2 switched on, see [2, 12]), but is

also “modulated” by multiplication by a linear function. Moreover, one can find, that

Φ′′(t1, a, T1, T2) =
d2Φ

dz2
(3.42)

=
1

√

(z − v)2 − 4Λ2
×

×

(

−4T2 +
T1 + 2T2v + 4T2Λ log Λ

z − v − 2Λ
+

T1 + 2T2v − 4T2Λ log Λ

z − v + 2Λ

)

For the nonabelian generalization it is also rather useful to rewrite (3.41) in the form

dΦ(t1, a, T1, T2) = −4T2 log wdz − 4T2 log Λdy − 2(T1 + 2T2v)
dz

y
(3.43)

with y defined in (2.2).

– 10 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
5

T2, T3 switched on. Now, instead of (3.40), one gets

Φ(t1, a, T1, T2, T3) =
dS

dz
= −2T1 log w − 4T2H1(z,w) − 6T3H2(z,w) (3.44)

provided by

t1 = (2T1 + 4T2v + 6T3v
2) log Λ + 12T3Λ

2(log Λ − 1) (3.45)

a = T1v + T2

(
v2 − 2Λ2 + 4Λ2 log Λ

)
+ T3

(
v3 − 6vΛ2 + 12vΛ2 log Λ

)
(3.46)

One can easily notice, that in the limit suppressing instantons, i.e. suppressing powers of

Λ and keeping only the logarithmic terms log Λ, equations (3.34), (3.35) and (3.45),(3.46)

acquire the form

t1 = 2T ′(v) log Λ + O(Λ2) (3.47)

a = T (v) + O(Λ2) (3.48)

reflecting the sense of higher descendants of unity as reparameterization z → T (z).

4. Nonabelian theory: perturbative limit

Let us now turn to the problem, how to construct the abelian integral with asymp-

totic (3.19) on generic hyperelliptic curve

y2 =

2Nc∏

j=1

(z − xj) (4.1)

of the extended nonabelian Seiberg-Witten theory. On the small phase space, i.e. when

only the t1 is nonvanishing, or the descendants of the Kähler class are switched off, the

curve (4.1) can be also written as

ΛNc

(

w +
1

w

)

= PNc(z) =

Nc∏

i=1

(z − vi) (4.2)

with (4.1) turning into

y2 = PNc(z)2 − 4Λ2Nc (4.3)

The perturbative limit corresponds to Λ → 0 in the above formulas, when the hyperelliptic

curve splits into two disjoint sheets of z-plane with Nc punctures, which can be described

by

wpert = PNc(z) =

Nc∏

i=1

(z − vi) (4.4)

i.e. a rational function on the z-plane with Nc punctures. In this section we discuss the per-

turbative limit of the nonabelian theory, defined entirely in terms of the rational curve (4.4),

and turn to generic situation of (4.1) below in section 6.
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Only T2 switched on. A perturbative anzatz for

Φ′ = −2

Nc∑

j=1

(

2T2 log(z − vj) +
T ′(vj)

z − vj

)

(4.5)

with

T ′(vj) = T1 + 2T2vj , j = 1, . . . , Nc (4.6)

can be easily conjectured, having e.g. formula (3.43). The coefficients of (4.5) are fixed by

resz=∞dΦ′ = 4T2 · Nc (4.7)

resz=∞dΦ ≡ −resz=∞dΦ′ = −2T1 · Nc (4.8)

The modified Seiberg-Witten periods are now given by the formulas

aj =
1

2πi

∮

Aj

z2

2
dΦ′ = resz=vj

z2

2
dΦ′ (4.9)

= T (vj) = T1vj + T2v
2
j , j = 1, . . . , Nc

Integrating (4.5) one gets explicitly

Φ = −2

Nc∑

j=1

(
2T2(z − vj)(log(z − vj) − 1) + T ′(vj) log(z − vj)

)
+ t1 (4.10)

One easily finds, that the derivatives of generating differential

∂

∂aj
Φdz =

1

T ′(vj)

∂Φ

∂vj
dz = 2

dz

z − vj
, j = 1, . . . , Nc (4.11)

appear to be the “canonical holomorphic” differentials with the first order poles at z = vj

on rational degeneration of the curve (4.2). Moreover, one can find, that

− 2dHn =
∂

∂Tn
Φ

∣
∣
∣
∣
a

dz =
∂

∂Tn
Φ

∣
∣
∣
∣
v

dz −

Nc∑

j=1

vn
j

dz

z − vj
(4.12)

giving rise to

dH1 = dz

Nc∑

j=1

(

log(z − vj) +
vj

z − vj

)

(4.13)

dH2 = dz

Nc∑

j=1

(

2z(log(z − vj) − 1) + 2vj +
v2
j

z − vj

)

(4.14)

where the last terms in the r.h.s. (linear combinations of the “holomorphic” differentials

on degenerate rational curve) kill the residue at infinity.
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Integrating (4.10) further, one finds

S = t1z − 2

Nc∑

j=1

(

T2(z − vj)
2

(

log(z − vj) −
3

2

)

+ T ′(vj)(z − vj)(log(z − vj) − 1)

)

= t1z − 2

Nc∑

j=1

(

T2H
(+)
2 (z − vj) + T ′(vj)H

(+)
1 (z − vj)

)

(4.15)

which defines the perturbative prepotential by

aD
i = S(vi) = t1vi − 2

∑

j 6=i

(

T2H
(+)
2 (vi − vj) + T ′(vj)H

(+)
1 (vi − vj)

)

=
∂Fpert

∂ai
(4.16)

Formula (4.16) can be integrated, since for i 6= k one gets

∂S(vi)

∂vk
= −2T ′(vk) log(vi − vk) (4.17)

and this gives rise to the perturbative prepotential

Fpert(a1, . . . , aNc ;T1, T2) =

Nc∑

j=1

FUV (vj) +
∑

i6=j

F (vi, vj ;T1, T2) (4.18)

where one have substitute for vi a solution to T (vi) = ai with the asymptotic vi ∼
ai

T1
+ . . .,

when expanding over the higher times Tn. The bare ultraviolet prepotential

FUV (v) =
1

2
t1

(

T1v
2 +

4

3
T2v

2

)

=
a2t1

2T1
−

T2a
3t1

3T 3
1

+
T 2

2 a4t1

2T 5
1

+ . . . (4.19)

coincides, of course, with the perturbative part of the U(1) prepotential (3.38) or partition

function of the P
1 model. The “interacting part” in (4.18) F (vi, vj ;T1, T2) satisfies the

integrability condition
∂2F

∂ai∂aj
= log(vi − vj) (4.20)

provided by ai = T (vi), i = 1, . . . , Nc. If only T1, T2 6= 0, the direct integration gives an

expression

F (v1, v2;T1, T2) = −
1

2
(v1 − v2)

2(T1 + T2(v1 + v2))
2 log(v1 − v2) +

+
1

4
(v1 − v2)

2

(

3(T1 + T2(v1 + v2))
2 +

1

2
T 2

2 (v1 − v2)
2

)

= −
1

2
(T (v1) − T (v2))

2 log(v1 − v2) +
3

4
(T (v1) − T (v2))

2 +
T 2

2

8
(v1 − v2)

4

= −
1

2
(a1 − a2)

2 log(v1 − v2) +
3

4
(a1 − a2)

2 +
T 2

2

8
(v1 − v2)

4 (4.21)

Expanding over T2 we see that gravitational descendants of unity give rise to the polynomial

corrections to the coupling constants

Tij =
∂2Fpert

∂ai∂aj
∼ log(vi − vj) = log

ai − aj

T1
−

T2

T 2
1

(ai + aj) + O(T 2
2 ) (4.22)
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which remind arising in the context of five-dimensional supersymmetric gauge theories.

Moreover, for the particular values Tn = (−)n−1

n , we get formally the perturbative limit of

the (compactified) five-dimensional Seiberg-Witten theory [16], with the infrared couplings

log(vi − vj) = log (eai − eaj ) =
ai + aj

2
+ log

(

2 sinh
ai − aj

2

)

(4.23)

and studied recently in the context of its relation to summing over random partitions

in [17].

Perturbative theory with N descendants of unity switched on. For N first de-

scendants of unity switched on (with arbitrary N), it is convenient to introduce auxiliary

functions

σ(z;x) =
∑

k>0

T (k)(x)

k!
H

(+)
k (z − x) (4.24)

ϕ(z;x) =
dσ

dz
=
∑

k>1

T (k)(x)

(k − 1)!
H

(+)
k−1(z − x) + T ′(x) log(z − x) (4.25)

with T (k)(x) being k-th derivatives of the polynomial T (x) =
∑N

n=1 Tnxn. One can define

generally

S(z) = S(z; v1, . . . , vNc) = −2

Nc∑

j=1

σ(z; vj) + t′(z) (4.26)

Φ(z) = Φ(z; v1, . . . , vNc) = −2

Nc∑

j=1

ϕ(z; vj) + t′′(z) =
dS

dz
(4.27)

and express the derivatives of the perturbative prepotential as

∂Fpert

∂vi
= S(vi) = t′(vi) − 2

∑

j 6=i

σ(vi; vj) (4.28)

where the integrability condition (4.20) is now ensured by

∂

∂x
σ(z;x) =

∑

k>0

T (k+1)(x)

k!
H

(+)
k (z − x) −

∑

k>0

T (k)(x)

(k − 1)!
H

(+)
k−1(z − x) (4.29)

=
T (N+1)(x)

N !
H

(+)
N (z − x) − T ′(x) log(z − x) = −T ′(x) log(z − x)

We therefore justify formula (4.21) for arbitrary N , i.e.

Fpert(a1, . . . , aNc ; t, T ) =

Nc∑

j=1

FUV (aj; t, T ) +
∑

i6=j

F (ai, aj ;T )

aj = T (vj), j = 1, . . . , Nc

FUV (a; t,T) = FUV (v(a); t,T) =

∫ v(a)

0
t′(v)dT (v) =

∫ a

0
t′(v(a))da

∂2

∂ai∂aj
F (ai, aj ;T) = log(vi(ai,T) − vj(aj ,T)) (4.30)

– 14 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
5

with v(a) = v(a, T ) = T−1(a), being a solution with asymptotic v = a
T1

+ . . . for small

higher times.

Before considering the nonperturbative formulation on smooth curve (4.1) it is instruc-

tive to discuss the relation of already obtained in Nc = 1 case formulas with the functional

formulation. As in the half-truncated theory [2, 12] we postulate, that the linear and bilin-

ear parts of the functional are directly determined by the perturbative prepotential (4.30).

In its turn, the functional formulation would become a good “reference point” for the

construction in terms of abelian differentials on smooth hyperelliptic curve (4.1).

5. Functional methods and Virasoro constraints

Let us now turn to the functional formulation of the proposed above analytic formulas.

To remind, we start first with the case, when all gravitational descendants of unity are

switched off, except for the condensate of 〈σ1(1)〉 6= 0.

Switched off Tn, n > 1. The curve (2.1) endowed with the function (2.4) arises [2] in

the extremum problem for the functional

F =
1

2

∫

dxf ′′(x)t(x) −
1

2

∫

x1>x2

dx1dx2f
′′(x1)f

′′(x2)F (x1 − x2) (5.1)

extremized w.r.t. second derivative of the profile function f ′′(x) = d2f
dx2 , constrained by

1 =
1

2

∫

dxf ′′(x) =
1

2
f ′(x)

∣
∣
∣
∣

x+

x−

(5.2)

together with

T0 = −a = −
1

2

∫

dx xf ′′(x) =
1

2

(
f(x) − xf ′(x)

)∣
∣x+

x−
(5.3)

and where the kernel is

F (x) =
1

2
H

(+)
2 (x) =

x2

2

(

log x −
3

2

)

(5.4)

while the source t(x) is defined by ultraviolet prepotential in (1.1).

Constraints (5.2), (5.3) can be taken into account by adding them to the functional (5.1)

with the Lagrange multipliers

F → F + aD

(

a −
1

2

∫

dx xf ′′(x)

)

+ σ

(

1 −
1

2

∫

dx f ′′(x)

)

(5.5)

so that the variational equation for (5.5) reads

t(x) −

∫

dx̃f ′′(x̃)F (x − x̃) = aDx + σ (5.6)

One also gets from (5.1)

∂F

∂tk
=

1

2(k + 1)

∫

dxf ′′(x)xk+1, k > 0 (5.7)

– 15 –



J
H
E
P
0
3
(
2
0
0
8
)
0
5
5

and, due to (5.5)

aD =
∂F

∂a
(5.8)

The second Lagrange multiplier in (5.5)

σ = − (S1)0 =
∂F

∂T1
(5.9)

is given by the derivative of prepotential w.r.t. the first flow of the extended hierarchy. We

remind that the derivatives over the Lagrange multipliers can be taken directly, at constant

f ′′(x), since all other contributions to these derivatives are proportional to the extremum

equation, and therefore vanish on its solutions.

Integrating (5.6), one gets the double-integral representation

F =
1

2

∫

x1>x2

dx1dx2f
′′(x1)f

′′(x2)F (x1 − x2) + aaD + σ (5.10)

which, together with (5.1), gives

F =
1

4
aaD +

1

2
σ +

1

4

∫

dxf ′′(x)t(x) =
1

4
a
∂F

∂a
+

1

2

∑

k>0

tk
∂F

∂tk
+

1

2
σ (5.11)

where the last equality follows from (5.7), (5.8). Comparing it with representation

F =
1

2

(

a
∂F

∂a
+
∑

k>1

(1 − k)tk
∂F

∂tk

)

+
∂F

∂t1
−

a2

2
(5.12)

and using (5.9), one derives

∂F

∂T1
+

1

2
a
∂F

∂a
−
∑

k>0

ktk
∂F

∂tk
+ 2

∂F

∂t1
− a2 = 0 (5.13)

or the quasiclassical L0-Virasoro constraint at fixed Tn = δn,1.

Quasiclassical Virasoro constraints. The following integral along the boundary of

the cut cylinder

∮

Φ2zn+1dz =

∮ (
dS

dz

)2

zn+1dz = 0, n = −1, 0, 1, 2, . . . (5.14)

vanishes, since, analogously to [4],

Φ =
dS

dz
=

z→∞
−2
∑

n>0

nTnzn−1(log z − cn−1) +
∑

k>0

ktkz
k−1 +

2a

z
+ 2

∞∑

k=1

1

zk+1

∂F

∂tk
(5.15)

has no singularities in the interior of the cut cylinder, since dS = 0 at the branching points,

where dz = 0.

Technically, it is simpler instead of (5.14) to consider the “string equations”, or the

a-derivative of this formula. Namely,
∮

Φzn+1 ∂

∂a
Φdz =

∮

Φzn+1 dw

w
= 0 (5.16)
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since all time-derivatives are taken at constant z. Moreover, one can take care only of

the constant part of the contributions into (5.14) and (5.16) from the A- and B-integrals,

forming the boundary of the cut cylinder, see details in appendix. For example, if n = −1

and only T1 6= 0, formula (5.16) gets two obvious contributions

[∫

B+

+

∫

B−

]

Φ
dw

w
∼ T1

∫

B

dw

w
∼ T1

∂2F

∂a2
(5.17)

while [∫

A+

+

∫

A−

]

Φ
dw

w
∼ res∞

(

t′′(z)
dw

w

)

∼ t1 +
∑

k>1

ktk
∂2F

∂a∂tk−1
(5.18)

which form together the desired string equation, or a-derivative of the L−1 Virasoro con-

straint from [6, 9].

Functional with all descendants switched on. The perturbative formulas in the

nonabelian case (4.30) suggest the following form of the functional with all gravitational

descendants stitched on

F =
1

2

∫

dxf ′′(x)FUV (x) +
1

2

∫

x1>x2

dx1dx2f
′′(x1)f

′′(x2)F (x1, x2;T) + (5.19)

+aD

(

a −
1

2

∫

dxf ′′(x)T (x)

)

+ σ

(

1 −
1

2

∫

dxf ′′(x)

)

(5.20)

where 1

FUV (x) ≡ FUV (x; t,T) =

∫ x

0
t′(x)dT (x) (5.21)

∂2

∂x1∂x2
F (x1, x2;T) = T ′(x1)T

′(x2) log(x1 − x2) (5.22)

The variation of (5.19) over f ′′(x) gives

FUV (z) +

∫

dxf ′′(x)F (z, x;T ) = aDT (z) + σ, z ∈ I (5.23)

whose z-derivative, after dividing by T ′(z), turns into

t′(z) −

∫

dxf ′′(x)σ(z;x) = aD, z ∈ I (5.24)

Due to the property of the function σ(z, x), following directly from its definition (4.24) and

expansion

1

n!
H(+)

n (z − x) =
1

n!
(z − x)n (log(z − x) − cn) (5.25)

=

n∑

k=0

H
(+)
n−k(z)

(n − k)!

(−x)k

k!
+ (−)n−1

∑

k>0

xn+k

kzk

1

(k + 1) . . . (k + n)

1Formulas (5.19) and (5.21) were derived earlier by N. Nekrasov, in a similar context, but using different

arguments.
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one gets (for the switched on N descendants of unity)

σ(z;x) =
∑

k>0

T (k)(x)

k!
H

(+)
k (z − x) =

N∑

n=1

TnH(+)
n (z) − T (x) log z +

∑

k>0

Fk(x)

kzk
(5.26)

where

Fk(x) =

∫ x

0
x
kdT (x) (5.27)

and we have used the obvious polynomial identities

k!Tk = T (k)(0) =
N∑

n=0

T (n+k)(x)

n!
(−x)n, k = 0, . . . , N (5.28)

From (5.24) it follows, that the integral

S(z) = t′(z) −

∫

dxf ′′(x)σ(z;x) − aD (5.29)

= t′(z) − aD −
∑

k>0

∫

dxf ′′(x)
T (k)(x)

k!
H

(+)
k (z − x) (5.30)

whose real part vanishes on the support by (5.24) has an asymptotic expansion (3.19) and

is constant on the cut. Moreover, the coefficients at negative powers of z in the r.h.s. are

given by
∫

dxf ′′(x)Fk(x) = 2

∫

dxf ′′(x)
∂FUV (x; t,T)

∂tk
= 2

∂F

∂tk
(5.31)

However, it is not easy to get any simple expression for the Tn-derivatives of the func-

tional (5.19), since almost everything depends on {Tn} in the r.h.s. of this formula. In

order to get the new formula (3.16) for the derivatives over the variables extending the

Toda chain hierarchy, one has to consider a different form of the functional (5.19).

Another form of the functional. The formula (5.5) in fact suggests how the func-

tional problem can be re-formulated in a different way, when the higher times of extended

hierarchy are switched of. Suppose again that only T1, . . . , TN are non-vanishing, which

somehow characterize the N -th “class of backgrounds” for the gauge theory. One can write

for the perturbative prepotential

FUV (x) =

∫ x

0
t′(x)dT (x)

= t(x)T ′(x) − t2(x)T ′′(x) + . . . + (−)N−1tN (x)T (N)

= D̂N−1(x)tN (x) (5.32)

where

tN(x) =
∑

k>0

tk
xk+N

(k + 1) . . . (k + N)
(5.33)

t(x) ≡ t1(x) =
dN−1

dxN−1
tN (x) (5.34)
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and we have introduced the differential operator with the polynomial coefficients

D̂N−1(x) = T ′(x)
dN−1

dxN−1
− T ′′(x)

dN−2

dxN−2
+ . . . + (−)N−1T (N) (5.35)

Consider also an integral transform, or introduce new “density” by the formula

∫

dxρ(x)g(x) =

∫

dxf ′′(x)D̂N−1(x)g(x) (5.36)

for an integral over the support I with an arbitrary function g(x) (from some reasonable

class of functions). It means, that in certain sense this density is ρ(x) ∼ D̂
†
N−1(x)f ′′(x).

Note also, that using D̂-operators (5.32), one can write for the kernel in (5.21)

F (z, x) =
(−)N

(2N)!
D̂N−1(z)D̂N−1(x)H

(+)
2N (z − x) (5.37)

=
N∑

n,k=1

(−)n−1T (n)(z)T (k)(x)
H

(+)
n+k(z − x)

(n + k)!
(5.38)

while the contribution of the linear term in (5.19) - with the ultraviolet prepotential - turns

into ∫

dxf ′′(x)FUV (x) =

∫

dxρ(x)tN (x) (5.39)

The density ρ(x) obeys important constraints, directly following from (5.36), namely

1

2

∫

dxρ(x)
xn

n!
=

1

2

∫

dxf ′′(x)D̂N−1(x)
xn

n!
= (−)n−1TN−n (5.40)

n = 0, 1, 2, . . . , T0 = −a

which have to be taken into account, if one considers variation of the functional over the

new density.

In other words, instead of (5.1) one can consider an extremum for

F = FN [ρ]

=
1

2

∫

dxρ(x)tN (x) −
(−)N−1

2(2N)!

∫

x1>x2

dx1dx2ρ(x1)ρ(x2)H
(+)
2N (x1 − x2) +

+

N∑

n=0

σn

(

Tn −
(−)n−1

2

∫

dx
xN−n

(N − n)!
ρ(x)

)

(5.41)

where the kernel (−)N−1

(2N)! H
(+)
2N (x) = 1

(2N)!x
2N (log x − c2N ) does not depend explicitly of the

times T, all this dependence is absorbed by density ρ(x). The extremum condition for the

functional (5.41) stays, that (real part of)

SN (z) = tN (z) −
(−)N−1

(2N)!

∫

dxρ(x)H
(+)
2N (z − x) +

N∑

n=0

σn(−)n
zN−n

(N − n)!
(5.42)
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vanishes on the support z ∈ I of ρ(z). Taking up to N -th derivatives of (5.42) one gets

SN−1(z) = tN−1(z) −
(−)N−1

(2N − 1)!

∫

dxρ(x)H
(+)
2N−1(z − x) +

N−1∑

n=0

σn(−)n
zN−n−1

(N − n − 1)!

...

S(z) = t′(z) −
(−)N−1

N !

∫

dxρ(x)H
(+)
N (z − x) + σ0 (5.43)

a sequence of functions vanishing on the cut. The last integral S(z) = dN

dzN SN (z) coincides

with (5.29), and therefore has the same properties.

In particular, at z → ∞ the last integral in (5.43) has an expansion where the coeffi-

cients are expressed by the “moments” of new density

S(z) =
z→∞

t′(z) −
N∑

n=0

zn(log z − cn)
(−)N−n

(N − n)!

∫

xN−nρ(x)dx + σ0 +

−
∑

k>0

1

k(k + 1) . . . (k + N)zk

∫

xN+kρ(x)dx

= t′(z) − 2
N∑

n=0

Tnzn(log z − cn) −
∂F

∂a
− 2

∑

k>0

1

kzk

∂F

∂tk
(5.44)

reproducing (3.19) by (5.36) and (5.40) (or upon the constraints at Lagrange multipliers

in (5.41)). From the properties of the functional (5.41), one can straightforwardly find the

derivatives

∂F

∂tk
=

1

2(k + 1) . . . (k + N)

∫

xk+Nρ(x)dx (5.45)

σ0 =
∂F

∂T0
= −

∂F

∂a
= −aD (5.46)

coinciding with (5.31).

However, after arbsorbing all nontrivial T-dependence into ρ in (5.41), it becomes

obvious, that
∂F

∂Tn
= σn = (−)nn! (Sn)0 , n = 0, . . . , N (5.47)

The naively divergent integrals, containing ρ(x), should be understood only in the sense

of (5.36).

6. Nonabelian theory from abelian integrals

Finally, let us turn to discussion of generic nonabelian theory, whose perturbative limit was

considered in section 4. The quasiclassical tau-function is now defined by constructing an

abelian integral on the hyperelliptic curve (4.1), whose properties can be extracted from

integral representations of section 5.

It is again important to fix certain finite number N of the gravitational descendants of

unity being switched on. The integral representation (5.29) defines a multivalued abelian
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integral on the curve (4.1), and only its N -th derivative becomes single-valued. Denote as

usual Φ = dS
dz , and further Φ′ = dΦ

dz , . . . up to

dΦ(N−1) = d

(
dN−1Φ

dzN−1

)

(6.1)

= t(N+2)(z)dz − N !TN

∫
f ′′(x)dx

z − x
dz −

N−1∑

k=1

(−)k
∫

T (N−k)(x)f ′′(x)dx

(z − x)k+1
dz

which is already a single-valued on the non-degenerate curve (4.1) abelian differential, odd

under the hyperelliptic involution, since its real part vanishes on the cut. Its form can

be totally determined by its singularities at the infinity points P± and at the ramification

points {xj}, j = 1, . . . , 2Nc, where it also has poles due to behavior f ′′(x) ∼ (x − x±)−1/2.

The singularities at ramification points are in fact artificial, in the sense that one may

think of Φ′, . . . ,Φ(N−1) as of the regular at branch points 2−, . . . , N− differentials on the

curve (4.1).

One can therefore write for (6.1) an explicit formula

dΦ(N−1) =
φ(z)dz

y
+

dz

y

2Nc∑

j=1

N−1∑

k=1

(

qk
j

(z − xj)k

)

(6.2)

where φ(z) is a polynomial of power

deg φ(z) =

{

Nc − 1, n ≤ N

Nc − 1 + n − N, n > N
(6.3)

for the theory on genus Nc − 1 curve (4.1) and with n − 1 and N nonvanishing times {tk}

and {Tn} correspondingly. The periods of (6.2) are fixed by (6.1), or

1

2πi

∮

Ai

dΦ(N−1) = −2N !TN (6.4)

∮

Bi

dΦ(N−1) = 0 (6.5)

Couning the period constraints (6.4) and (6.5), one can consider Nc cycles Ak, k =

1, . . . , Nc, surrounding generally Nc distinct segments of the support of f ′′(x) 6= 0, x ∈

Ik, k = 1, . . . , Nc, which is equivalent to the canonical choice of A-cycles together with the

residue at infinity. Totally, (6.4) give 2Nc − 1 period constraints, and should be completed

by the 2Nc-th condition

∫ z(P+)

z(P−)
dΦ(N−1) = −2N !NcTN log z + 4πiN !TN Z + O

(
1

z

)

(6.6)

i.e. the regularized constant part of the integral
∫ P+

P−
dΦ(N−1) vanishes modulo the period

lattice (6.4), (6.5), since the integral (6.6) depends on the choice of the integration path.
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Small phase space and T2 6= 0. Consider for simplicity only t1 6= 0 and switched on

T1, T2. Formula (6.1) gives for this case

dΦ′ =
φNc−1(z)dz

y
+

dz

y

2Nc∑

j=1

(
qj

z − xj

)

(6.7)

which depends on 3Nc coefficients of φNc−1(z) and {qj}, as well as 2Nc branch points {xj},

i.e. totally of 5Nc undetermined yet coefficients. The period integrals (6.4), together with

the residue

resP+
dΦ′ = −resP−

dΦ′ = 4T2 · Nc (6.8)

give altogether 2Nc constraints, or fix the parameters {qj} of the differential (6.7), leaving

yet no restrictions for the coefficients of φNc−1(z) and branch points of the curve.

Now, one can define an abelian integral Φ′(P ) =
∫ P

dΦ′ or the differential

dΦ = dz

∫ z

dΦ′ (6.9)

which is multivalued, but all the jumps are fixed by (6.4), being proportional to 4πi ·

T2dz. The integration constant in (6.9) is fixed by requirement, that Φ′(P ) ∼
z(P )→∞

−4NcT2 log z + O
(

1
z

)
, consistent due to (6.6). Since the differential of hyperelliptic co-

ordinate on (4.1) has vanishing periods
∮

dz = 0 along any cycle, one can make sense of

the periods of the differential (6.9) itself, and put

1

2πi

∮

Ak

dΦ ≡ −
1

2πi

∮

Ak

zdΦ′ = T1

∫

Ik

dxf ′′(x) = 2T1, k = 1, . . . , Nc (6.10)

∮

Bk

dΦ ≡

∮

Bk

zdΦ′ = 0 (6.11)

The period integrals (6.10), (6.11) together with normalization condition (say, Φ(xNc) = 0)

give 2Nc more constraints on the total set of undetermined parameters, while the rest is

absorbed by the Seiberg-Witten periods, defined now as

aj =
1

4πi

∮

Aj

z2

2
dΦ′, j = 1, . . . , Nc (6.12)

whose sum gives the residue at infinity.

N descendants T1, . . . , TN 6= 0. Almost the same counting can be performed for the

generic case with N descendants. One has now 2Nc · N + Nc = (2N + 1)Nc parameters of

φNc−1(z), {qk
j } and branch points {xj} (in the case of nonvanishing higher {tk} they will

be absorbed into higher coefficients of the polynomial φ(z) and the integration constants).

Being constrained by constancy of its periods, we rest with (2N − 1)Nc variables.

We have then to restore the differential dΦ by multiple integration of (6.1). At each

step we have to fix the periods of dΦ(N−2), . . . , dΦ′ by 2Nc constraints, ending up, therefore

with

(2N + 1)Nc − 2Nc · N = Nc (6.13)
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variables, which can be conveniently chosen as the Seiberg-Witten periods

aj =
1

4πi

∮

Aj

zN

N !
dΦ(N−1), j = 1, . . . , Nc (6.14)

The multivalued differential dS = Φdz has now constant jumps, depending linearly upon a

and the times T1, . . . , TN , and one can always choose its branch with the asymptotic (3.19),

if taken along the real axis at z → +∞ on the “upper” sheet.

Quasiclassical tau-function. The dual periods

aD
j =

1

2

∮

Bj

zN

N !
dΦ(N−1) =

∂F

∂aj
, j = 1, . . . , Nc (6.15)

define the gradients of the quasiclassical tau-function. Integrability condition for (6.15) is

guaranteed by symmetricity of the period matrix of the curve (4.1), following from

δ(dS) = δ (Φdz) ≃ holomorphic (6.16)

following directly from the constancy of the periods dΦ′, . . . , dΦ(N−1). In addition to the

remaining intact “abelian formulas” (3.18) and (3.16) that defines the full quasiclassical

tau-function for the perturbed theory, and the integrability is guaranteed by the Riemann

bilinear relations.

7. Discussion

We have presented in this paper a quasiclassical geometric formulation for the full non-

truncated topological P
1 string model, when all the descendants σk(̟) and σk(1) with k >

0 are switched on, and propose its generalization to the nonabelian dual supersymmetric

gauge theory. For the topological string model the quasiclassical formulation is given in

“mirror” terms - a rational curve, which can be interpreted as a dual Landau-Ginzburg

superpotential z = v + Λ
(
w + 1

w

)
on a cylinder, and the set of functions, odd under

its involution w ↔ 1
w . The descendants of the Kähler class σk(̟) generate the flows

of dispersionless Toda chain hierarchy, while the descendants of unity σk(1) produce the

logarithmic flows [5] of the so called [10] extended Toda hierarchy, which can be possibly

reformulated as a reduction of two-dimensional Toda lattice. The exact relation of the

quasiclassical solution, proposed above, to the two-dimensional Toda lattice is beyond the

scope of this paper, but let us present here a hint, how the multiple integral formula (3.16)

can be interpreted in this way.

Equivariant Toda lattice. The relation between the extended Toda and equivariant

Toda lattice [8, 11] includes the change of the variables

Xk+1 =
Tk

ǫ
+ tk+1, X̄k+1 = −

Tk

ǫ
, k ≥ 0 (7.1)

or

tk = Xk + X̄k, k > 0 (7.2)

Tk = ǫ
(
Xk+1 − X̄k+1

)
, k ≥ 0 (7.3)
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For example, the prepotential on the small phase space

F(X1, X̄1; ǫ) =
ǫ2

6

(
X3

1 + X̄3
1

)
+ eX1+X̄1 (7.4)

=
a2t1

2
+ et1 +

ǫ

2
at21 +

ǫ2

6
t31

coinciding with (2.21) at ǫ → 0, indeed satisfies the two-dimensional Toda lattice equation

∂2F

∂X̄1∂X1
= exp

(

1

ǫ2

(
∂

∂X1
−

∂

∂X̄1

)2

F

)

(7.5)

if one takes the solutions, constrained by reduction, including

∂F

∂X1
−

∂F

∂X̄1
= ǫ

∂F

∂X0
(7.6)

One can expect therefore, generally, that

∂F

∂Xk
−

∂F

∂X̄k
= ǫR̂k ◦ F , ∀k > 0 (7.7)

where R̂k is presumably a (k-th order) differential operator in X0, R̂1 = ∂
∂X0

. At ǫ → 0

conditions (7.7), (7.6) turn into the Toda chain reduction

∂F

∂Xk
−

∂F

∂X̄k
= 0, ∀k > 0 (7.8)

∂F

∂Xk
+

∂F

∂X̄k
= 2

∂F

∂tk
, ∀k > 0 (7.9)

where {tk} (7.2) are the times of the Toda chain. More generally, in the reduction to the

Toda chain, the set of conditions (7.8) can have a linear function at the r.h.s.

∂F

∂Xk
−

∂F

∂X̄k
= Ck(Xk − X̄k), ∀k > 0 (7.10)

with Ck ∼ k is a constant as a function of times. For the function (7.4) one gets instead

if (7.10)
∂F

∂X1
−

∂F

∂X̄1
=

ǫ

2

(
X2

1 − X̄2
1

)
=

ǫ

2

(
X1 + X̄1

) (
X1 − X̄1

)
(7.11)

so one finds, that C1 = ǫ
2

(
X1 + X̄1

)
= ǫ

2t1 instead of a constant becomes a “slow” mod-

ulated linear function of the Toda chain time t1. The exact form of the operators R̂k is

not yet known (though perhaps can be extracted from [8]), but the formulas (3.16), (A.1)

establish the quasiclassical correspondence

R̂nF ∼







∫

dz
. . .

∫

dz
︸ ︷︷ ︸

n

S







0

(7.12)

For the two-dimensional Toda lattice one has two different co-ordinates z+ and z− at two

infinities P± corresponding to the flows in X and X̄ time variables. One may think then,

that z+ − z− ∼
∫

dS and the differences of the higher Hamiltonians Ω(z+) − Ω̃(z−) ∼
∫

. . .
∫

dS produces the desired formula (7.12).
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Nonabelian theory. It is not yet completely clear, when is the sense of “descendant”

deformation of the nonabelian theory. The descendants of the Kähler class deform the

gauge theory in the ultraviolet, which is encoded in 1
2τ0x

2 → FUV (x; t) for the short-

distance prepotential (1.1). The descendants of unity perform rather a reparameterization

on the moduli space of gauge theory aj → T (aj)+O(Λ2Nc), whose exact sense remains yet

unclear.

We have considered in [2, 12] and above here the theory, where all tk with k > 1 and

Tn with n > 1 generate infinitesimal perturbations of the model on “small phase space”.

Nevertheless, all descendants deform the Seiberg-Witten curve (except for the “abelian”

case of the P
1 model), which now turns to be a generic hyperelliptic curve (4.1), though still

being “not to far” in the moduli space from the Seiberg-Witten curve (4.2). In particular,

we do not address any questions, related with possible “large” deformations in moduli

space, changing the genus etc. Roughly speaking, if the t-deformations of the theory

lead us towards the processes of generation of fundamental multiples, in the same sense

the T -deformations lead towards embedding of the theory into the compactified higher-

dimensional target spaces.
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A. Riemann bilinear identities

Equation (3.16), or

∂F

∂Tn

∣
∣
∣
∣
t

=







∫

dz
. . .

∫

dz
︸ ︷︷ ︸

n

S







0

(A.1)

gives rise to the mixed second derivatives

∂2F

∂tk∂Tn
=







∫

dz
. . .

∫

dz
︸ ︷︷ ︸

n

Ωk







0

(A.2)
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which should be compared to

∂2F

∂Tn∂tk
=

1

2
resP+

zkdHn = −
1

2
resP−

zkdHn, (A.3)

following from (2.8). In order to establish equivalence between (A.2) and (A.3), consider

the integral along the boundary of the cut w-cylinder with the removed points P±

∮

∂Σ
HndΩk = 2πi

∑

res HndΩk = 0 (A.4)

The integral in the l.h.s. can be rewritten as

∮

∂Σ
HndΩk =

[∫

A+

+

∫

A−

]

HndΩk +

[∫

B+

+

∫

B−

]

HndΩk (A.5)

where we have chosen the following parameterization of the cut w-cylinder:

A+ : w = εeiϕ, 0 < ϕ < 2π (A.6)

B+ : ε < w < R (A.7)

A− : w = Reiϕ, 2π > ϕ > 0 (A.8)

B− : R > w > ε (A.9)

The last term in the r.h.s. of (A.5) gives

[∫

B+

+

∫

B−

]

HndΩk =

∫

B

(
H+

n dΩk − H−
n dΩk

)
= 2πi

∫

B
zndΩk (A.10)

= 2πi
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)∣
∣
∣

R

ε
(A.11)

where, similarly to (3.17),

dnΩ
(n)
k

dzn
= Ωk, n ≥ 0 (A.12)

is introduced.

For the A-integrals one can write
∫

A±

HndΩk =

∫

A±

H(+)
n (z)dΩk ∓ 2πi resP±

zkdHn (A.13)

where by residue the coefficient at the term z−1 is meant. The first term in the r.h.s.

of (A.13) can be integrated by parts using (3.3) and (A.12), giving rise to

∫

A+

H(+)
n dΩk =

(

H(+)
n Ωk − nH

(+)
n−1Ω

(1)
k + . . . + (−)nn!H

(+)
0 Ω

(n)
k

)∣
∣
∣

ε+

ε−

= 2πi
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(ε)
∣
∣
∣
div

∫

A−

H(+)
n dΩk =

(

H(+)
n Ωk − nH

(+)
n−1Ω

(1)
k + . . . + (−)nn!H

(+)
0 Ω

(n)
k

)∣
∣
∣

R−

R+

= −2πi
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(R)
∣
∣
∣
div

(A.14)
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where in the r.h.s.’s one gets only the divergent parts of the corresponding expressions.

Altogether (A.4), (A.5), (A.10), (A.13) and (A.14) give rise to

0 =
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)∣
∣
∣

R

ε
+

+
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(ε)
∣
∣
∣
div

−

−
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(R)
∣
∣
∣
div

−

−resP+
zkdHn + resP−

zkdHn (A.15)

or, using the antisymmetry w.r.t. involution exchanging P+ and P−,

resP+
zkdHn = −resP−

zkdHn

=
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(ε)
∣
∣
∣
const

= −
(

znΩk − nzn−1Ω
(1)
k + . . . + (−)nn!Ω

(n)
k

)

(R)
∣
∣
∣
const

(A.16)

or

resP+
zkdHn = −resP−

zkdHn = (−)nn!
[

Ω
(n)
k

]

0
(A.17)

References

[1] A.S. Losev, A. Marshakov and N.A. Nekrasov, Small instantons, little strings and free

fermions, in Ian Kogan memorial volume. From fields to strings: circumnavigating theoretical

physics, M. Shifman, A. Vainshtein and J. Wheater eds., hep-th/0302191.

[2] A. Marshakov and N. Nekrasov, Extended Seiberg-Witten theory and integrable hierarchy,

JHEP 01 (2007) 104 [hep-th/0612019].

[3] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161].

[4] I.M. Krichever, The tau function of the universal Whitham hierarchy, matrix models and

topological field theories, Commun. Pure Appl. Math. 47 (1994) 437 [hep-th/9205110].

[5] T. Eguchi and S.-K. Yang, The Topological CP 1 model and the large-N matrix integral, Mod.

Phys. Lett. A 9 (1994) 2893 [hep-th/9407134].

[6] T. Eguchi, K. Hori and S.-K. Yang, Topological σ-models and large-N matrix integral, Int. J.

Mod. Phys. A 10 (1995) 4203 [hep-th/9503017].

[7] A. Givental, Gromov-Witten invariants and quantization of quadratic hamiltonians,

math.AG/0108100.

[8] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed

cycles, math.AG/0204305; The equivariant Gromov-Witten theory of P 1, math.AG/0207233.

[9] A. Okounkov and R. Pandharipande, Virasoro constraints for target curves,

math.AG/0308097.

[10] G. Carlet, B. Dubrovin and Y. Zhang, The extended Toda hierarchy, nlin/0306060;

B. Dubrovin and Y. Zhang, Virasoro symmetries of the extended Toda hierarchy,

math.DG/0308152.

– 27 –

http://arxiv.org/abs/hep-th/0302191
http://jhep.sissa.it/stdsearch?paper=01%282007%29104
http://arxiv.org/abs/hep-th/0612019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C7%2C831
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C7%2C831
http://arxiv.org/abs/hep-th/0206161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPAMA%2C47%2C437
http://arxiv.org/abs/hep-th/9205110
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C2893
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA9%2C2893
http://arxiv.org/abs/hep-th/9407134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA10%2C4203
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA10%2C4203
http://arxiv.org/abs/hep-th/9503017
http://arxiv.org/abs/math.AG/0108100
http://arxiv.org/abs/math.AG/0204305
http://arxiv.org/abs/math.AG/0207233
http://arxiv.org/abs/math.AG/0308097
http://arxiv.org/abs/nlin/0306060
http://arxiv.org/abs/math.DG/0308152


J
H
E
P
0
3
(
2
0
0
8
)
0
5
5

[11] T. Milanov, Hirota quadratic equations for the extended Toda hierarchy, math.AG/0501336;

The equivariant Gromov-Witten theory of CP 1 and integrable hierarchies, math-ph/0508054;

Gromov-Witten theory of CP(1) and integrable hierarchies, math-ph/0605001.

[12] A. Marshakov, On microscopic origin of integrability in Seiberg-Witten theory, Theor. Math.

Phys. 154 (2008) 362 [Teor. Mat. Fiz. 154 (2008) 424] [arXiv:0706.2851].

[13] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,

hep-th/0306238.

[14] K. Saito, On the periods of primitive integrals, Harvard Lecture Notes (1980);

A. Losev, Descendants constructed from matter field in topological Landau-Ginzburg theories

coupled to topological gravity, Theor. Math. Phys. 95 (1993) 595 [Teor. Mat. Fiz. 95 (1993)

307] [hep-th/9211090];

T. Eguchi, H. Kanno, Y. Yamada and S.K. Yang, Topological strings, flat coordinates and

gravitational descendants, Phys. Lett. B 305 (1993) 235 [hep-th/9302048].

[15] B. Logan and L. Shepp, A variational problem for random Young tableaux, Adv. Math. 26

(1977) 206;

S. Kerov and A. Vershik, Asymptotics of the Plancherel measure of the symmetric group and

the limiting shape of the Young diagrams (in Russian), DAN SSSR 233 (1977) 1024.

[16] N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys.

B 531 (1998) 323 [hep-th/9609219];

A.E. Lawrence and N. Nekrasov, Instanton sums and five-dimensional gauge theories, Nucl.

Phys. B 513 (1998) 239 [hep-th/9706025];

A. Marshakov and A. Mironov, 5D and 6d supersymmetric gauge theories: prepotentials from

integrable systems, Nucl. Phys. B 518 (1998) 59 [hep-th/9711156];

H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, Seiberg-Witten theory for a

non-trivial compactification from five to four dimensions, Phys. Lett. B 448 (1999) 195

[hep-th/9812078];

H.W. Braden, A. Marshakov, A. Mironov and A. Morozov, The Ruijsenaars-Schneider model

in the context of Seiberg-Witten theory, Nucl. Phys. B 558 (1999) 371 [hep-th/9902205].

[17] T. Maeda, T. Nakatsu, K. Takasaki and T. Tamakoshi, Free fermion and Seiberg-Witten

differential in random plane partitions, Nucl. Phys. B 715 (2005) 275 [hep-th/0412329];

T. Nakatsu and K. Takasaki, Melting crystal, quantum torus and Toda hierarchy,

arXiv:0710.5339.

– 28 –

http://arxiv.org/abs/math.AG/0501336
http://arxiv.org/abs/math-ph/0508054
http://arxiv.org/abs/math-ph/0605001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C154%2C362
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C154%2C362
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C154%2C424
http://arxiv.org/abs/0706.2851
http://arxiv.org/abs/hep-th/0306238
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C95%2C595
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C95%2C307
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMFZA%2C95%2C307
http://arxiv.org/abs/hep-th/9211090
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB305%2C235
http://arxiv.org/abs/hep-th/9302048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ADMTA%2C26%2C206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ADMTA%2C26%2C206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB531%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB531%2C323
http://arxiv.org/abs/hep-th/9609219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C239
http://arxiv.org/abs/hep-th/9706025
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB518%2C59
http://arxiv.org/abs/hep-th/9711156
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB448%2C195
http://arxiv.org/abs/hep-th/9812078
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C371
http://arxiv.org/abs/hep-th/9902205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB715%2C275
http://arxiv.org/abs/hep-th/0412329
http://arxiv.org/abs/0710.5339

